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Abstract

This thesis is the output of a six-months stage performed at CNR-IMATI, in Genova.
The goal of this thesis is to evaluate direct and iterative solvers on large sparse linear
systems by exploiting available parallel software, in order to study and compare their
performances in terms of efficiency and accuracy.

The focus of this study has been on general purpose methods and their high per-
formance computing (HPC) implementations, which will be tested on specific classes
of PDEs.

Main scientific outputs have been the presentation and acceptance by CINECA of
an ISCRA-C project for performing all the tests on MARCONI cluster, the realization
of a technical report [40] for IMATI-CNR and the submission of the technical report
to an international journal of parallel computing.
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1 Introduction

Partial Differential Equations (PDEs) are used to describe several problems relevant in many
fields, such as engineering, physics, biology [12], finance, social science [13] and many others.
In all these problems, the input data are a 2D or 3D domain and the PDE to be solved, while
the expected output is the solution on the domain. Since most of the PDEs cannot be solved
in their analytic form, these are discretized on a finite domain (with regular or irregular
grids) and with approximate techniques (such as Finite Element or Finite Differences); the
corresponding discrete formulation tipically reduces to the solution of a sparse linear system.
Figures 1 and 2 show the workflow and links among these steps.

Figure 1: PDE soution workflow.

Figure 2: PDE solution workflow - description.

The efficient solution of a large sparse linear system becomes relevant; in fact, several
algebraic scientific libraries that exploit HPC resources have been developed since 70’s to
nowadays, following two main approaches: direct and iterative methods.

Related work
In literature, many studies compare the performances for the solution of linear systems with
iterative and direct methods on parallel resources.

In [15] and [43], preconditioned Krylov solvers implemented on GPUs are studied, per-
forming the analysis on a large set of matrices and comparing the performances in terms of
execution time and efficiency.

In [45] and [44], the performances of sparse direct solvers (Pastix and SuperLU respec-
tively) have been compared on an extensive set of test probelms, taken from a range of
practical applications.

In [41], a new benchmark for the computation of the solution to the Poisson equation on
a regular 3D grid with a High-Performance Conjugate Gradient (HPCG) and a symmetric
Gauss-Seidel pre-conditioner is analysed in terms of computation and data access patterns.
The main steps of the HPCG include the conjugate gradient iterations’ setup and execu-
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tion, the multi-grid and coarse grid solvers, the validation and verification components, an
optional optimization step.

According to the comparison [42] of the two packages Amesos2 and Belos of the Trili-
nos Project, Amesos2 provides a common interface for sparse matrix factorization, enables
extended and mixed precision algorithms. Belos includes several iterative methods for the
solution of sparse linear systems and least-squares problems, and is oriented towards higher-
level problems’ solution. Decoupling the algorithms from the implementation of the under-
lying linear algebra improves efficient the portability of the libraries to a different hardware,
supports the independence of the HPC libraries from the linear algebra library, the max-
imisation of code reuse, the development of applications and architecture-aware algorithms
(including mixed precision methods). Since this previous work focuses on software packag-
ing and integration aspects, it further motivates our analysis on numerical solvers of linear
systems.

Goal of the thesis
The goal of this thesis is to analyze the performances of these methods and their parallel
implementations on Marconi HPC resource, varying input conditions and comparing dif-
ferent metrics and factors, and giving a clear interpretation of results. In particular, a set
of input conditions (2D and 3D domain, regular and irregular grids, sparsity pattern of
the coefficient matrix) has been defined; after that, iterative and direct methods have been
analyzed and compared in terms of scalability, efficiency, solution accuracy and impact of
multiple right-hand side terms. Finally, results have been analyzed with detail on the single
operations, in order to give an interpretaion of scalability results.

Contribution with respect to previous work
While the benchmark in [41] is focused on the definition of a computational kernel to drive
future systems’ design, we are interested in the combination of the computational aspects of
solvers for large sparse linear systems (e.g., arising from the discretisation of elliptic PDEs)
with guarantees on the convergence and accuracy of the underlying numerical solvers. We
focus our discussion on the Laplace equation on both regular and irregular 2D/3D grids;
however, our approach and analysis are enough general to be applied to the solution of
sparse linear systems associated with a generic PDE discretization.

The expected scientific output is a fair comparison of these different methods on the
Marconi resource, with a focus on the efficiency performances but also on the interpretation
of these results, in order to understand where and why a certain method is preferable.

Thesis structure
This thesis has been organized in the following sections:

• Chapter 2 gives a brief description of PDE properties and discretization methods;

• Chapter 3 describes linear systems, main solver methods (iterative and direct) and
their properties;

• Chapter 4 describes HPC resources (software and hardware) and metrics used for tests;

• Chapter 5 describes the PDE equation chosen for tests and the input conditions (do-
main, grid, discretization techniques);

• Chapter 6 shows results of the analysis performed;

• Chapter 7 shows scientific tools used for the visualization of the solution in both 2D
and 3D domain with regular and irregular grids.
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2 Partial Differential Equations

A PDE is the definition of one or more equations in the form of F (u, ux, uxx...) = 0 where

• u = u(x1, ..., xn) is the unknown function of n variables;

• x = (x1, x2, ..., xn) are the independent variables;

• ux, uxx, uxxx are partial derivatives of the function u;

The order of the PDE is the maximum derivative order appearing in the equation; fur-
thermore PDE can be classified as:

• Linear: F can be expressed as a linear combination of u and its derivative terms;

• Quasi Linear: F can be expressed as a combination of u and its derivative terms,
where the coefficients are dependent from u;

• Non linear: F is non linear with respect to its derivative terms.

Examples of PDE

Some of the classical examples of PDEs, in various fields, are:

• Transport equation: defines the flow of a particle through a path: ut + v(x, t) · ∇u = 0
where u is the function of concentration of mass transfer and v is the speed the quantity
is moving;

• Heat equation: describes the temperature diffusion on a surface-volume: ut−D·∆u = 0
where u is the heat function and D defines the thermal properties of the surface;

• Wave equation: describes the propagation of a wave on a surface-volume uttc
2 ·∆u = 0

where u is the wave amplitude function and c is the propagation speed.

2.1 Numerical method for PDEs

For the discretization of the input domain (2D surface or 3D volume), we distinguishes:

• regular grids which allows a simpler generation of the grid and a simpler discretization
of the PDE (Figure 3, top);

• irregular grid (e.g., triangular and tetrahedral meshes) which can be adapted to the
irregularity of the domain and allow a different sampling density on different domain
regions (Figure 3, bottom).

The discretization of a PDE on a regular or irregular grid tipically reduces to the solution
of a sparse linear system, whose coefficient matrix discretizes the differential operator of the
PDE and the right-hand side term is defined by the initial/boundary conditions. Main
approaches include finite differente, element, volume and spectral methods [37].
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Figure 3: Grid examples for regular/non regular 2D and 3D domains.

2.2 Sparse matrices

A m × n matrix with k non−zero elements, k � m × n and n ≥ m, is considered as sparse
if it has O(n) or O(n log n) non−zero elements. Sparse matrices store only non-zero values
and their position; this kind of data-structure allows us to increase the grid size without
affecting the amount of stored data.

Among the main methods for the storage of sparse matrices, we mention the compressed
row storage and the compressed column storage, both of which use a three vectors structure.
For example, CRS vectors are: vector of values, vector of non-zeros column position and
vector of quantity of non-zeros per row.
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3 Linear System

Solvers of linear systems can be classified as: (i) direct methods, which calculate the exact
solution through a decomposition of the coefficient matrix into one or more (triangular,
orthogonal) matrices and then calculate the solution by solving the factored linear system
[3]; (ii) iterative methods, which approximate the solution with a set of iterations that
converge to the solution from an initial guess. These methods stop at a certain iteration
according to a break criteria; (e.g., maximum number of iterations, convergence/divergence
of the solution etc) [2] [7] [8].

3.1 Iterative methods

Iterative methods find an approximate solution of a linear system ,starting from an initial
guess and converging to exact solution. Although several algorithms exist, they are all based
on the same general theory and techniques.

Projection method
Given a linear system Ax = b where A is a n × n matrix, projection techniques extract
an approximate solution from a subspace of Rn, denominate K. This search subspace is
m dimensional and, in order to extract the approximate solution, m constraints must be
imposed. Tipically, m orthogonality conditions are defined between the residual vector b−Ax
and m linearly independent vectors; this defines another subspace L of dimension m, called
subspace of constraints.

In analytic terms, a projection technique onto the subspace K and orthogonal to L is
a process which finds an approximate solution x̃ by imposing x̃ ∈ K and the new residual
vector b−Ax̃ ⊥ L. This can be expressed as:

x̃ = x0 + δ, δ ∈ K
(r0 −Aδ, ω) = 0, ∀ω ∈ L (1)

where r0 = b−Ax− 0 and δ = x̃− x0.

Main iterative methods differ from K and L choice.

Krylov subspace
There exists two classes of Krylov methods, on the basis of K subspace definition:

In the first class, the Krylov subspace ofm dimension isKm(A, v) = span(v,Av,A2v, ..., Am−1v);
the inverse of the coefficient matrix is approximated with a (m-1)−degree polynomial: A−1b ≈
x̃ = x0+qm−1(A)r0. Most algorithms are based on this method, whit the choice of Lm = Km
or Lm = AKm.

In the second class, two biorthogonal bases are built for the two subspaces

Km(A, v) = span(v,Av,A2v, ..., Am−1v) (2)

Km(A>, ω) = span(ω,A>ω, (A>)2ω, ..., (A>)m−1ω) (3)

Algoritmhs based on second class are projection processes onto Equation 2 orthogonally
to Equation 3.

Two algorithms exist for computing orthonormal bases: Arnoldi’s method (for first class)
and Lanczos method (for second class).

Arnoldi iteration
Arnoldi’s procedure is an algorithm for building an orthogonal basis of the Krylov subspace
Km, on the basis of the Modified Gram-Schmidt algorithm:
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1. Choose v1 of norm 1
2. For j = 1 : m
3. ωj = Avj
4. For i = 1 : j
5. hij = (wj , vi)
6. wj = wj − hijvi
7. endFor
8. if (hj+1,i = ‖wj‖2 ) == 0 Stop
9. vj+1 =

wj

hj+1,i

10. endFor

(4)

On the basis of this iteration, most of the iterative methods can be derived; for example,
given β = ‖r0‖2 and v1 = r0 / β, the approximate solution can be calculated as ym =
H−1
m (βe1) and xm = x0 + Vmym, where Hm is the Hessenberg matrix.

The method just described is called the Full Orthogonalization Method (FOM); some
variations of this approach lead to most known methods such as GMRES, Conjugate Gra-
dient etc.

Lanczos iteration
Lanczos Iteration builds a pair of biorhogonal bases, basing on following procedure:

1. Choose v1 and ω1 : (v1, ω1) = 1
2. Set β1 = δ1 = 0, ω0 = v0 = 0
3. For j = 1 : m
4. αj = (Avj , wj)
5. vj+1 = Avj − αjvj − βjvj−1

6. ωj+1 = A>ωj − αjωj − δjωj−1

7. If (δj+1 =
√
|(vj+1, ωj+1)|) == 0 Stop

8. βj+1 =
(vj+1,ωj+1)

δj+1

9. ωj+1 =
ωj+1

βj+1

10. vj+1 =
vj+1

δj+1

11. endFor

(5)

Then, solution can be calculated as ym = T−1
m (βe1) and xm = x0 + Vmym where:

Tm = tridia(δ2..δm, α1..αm, β2..βm) is the Hessenberg matrix.
From this approach, several methods can be derived, such as BCG and QMR.

Transpose-free variants
Each step of the Biconjugate Gradient algorithm and QMR requires a matrix-by-vector
product with both A and A> . However, the vectors pi or wj generated with A> do not
contribute directly to the solution; they are used only to obtain the scalars needed in the
algorithm (e.g., αj and βj for BCG).

Some technical tricks allow us to bypass the use of the transpose of A for computing
coefficients; with this approach, BICGSTAB and TFQMR are derived.

3.1.1 Iterative methods used for case study

For our analysis, we have considered several iterative methods (Table 1) working with
sparse, not symmetric (A 6= A>) and positive-definite (x>Ax > 0, ∀x 6= 0) matrices and
that allow general approach to the solution of the linear system (e.g., GMRES, BICG, GCR
etc.).

The efficiency of a solver mainly depends on the number of operations that it performs for
each iteration and on the number of iterations that it needs to converge to the solution under
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Method Acronym Sparse Not Symm Not Pos.Def Not A>

Generalized Minimal Residual Method GMRES x x x x
Biconjugate Gradient Stabiliezed BICGS x x x x

Conjugate Gradient CG x - - -
Generalized Conjugate Residual GCR x x x x

Improved Biconjugate Gradient Stabilized IBICGS x x x x
Transpose Free Quasi Minimal Residual TFQMR x x x x

Induced Dimension Reduction IDR x x x x
Minimum Residual MINRES x - x -

Quasi Minimal Residual QMR x x x -
Conjugate Gradient Squared CGS x x x x

Biconjugate Gradient BICG x x x -

Table 1: Iterative methods comparison.

a certain error threshold. The computational costs of the main methods (not preconditioned)
are:

GMRES : matvec+ 2 · it · vec+ vec+ it · prod+ norm→ 2m · krow + 4 ·m · it+ 4 ·m
BICGSTAB : 2 ·matvec+ 11 · vec+ 4 · prod→ 4m · krow + 19 ·m
GCR : 2 ·matvec+ 2 · prod+ 1 · it · prod+ 5 · vec+ 1 · it · vec→ 4m · krow + 9m+ 3 · it ·m
TFQMR : matvec+ 9 · vec+ prod+ norm→ 2m · krow + 14 ·m

(6)
where matvec = 2m · krow is a matrix−vector product, prod = 2m is a scalar product,

vec is a scalar−vector or vector−sum operation, norm is a 3m operation, krow are non-zeros
per row, m are matrix rows, it is the iteration number.

Data distribution

On the parallel implementation, the iterative methods used in this case study distribute
data on row blocks. Each process owns a portion of the coefficient matrix with a static
assignment.

3.2 Preconditioners

Preconditioners are used to reduce the conditioning number of the coefficient matrix and,
consequently, the rate of convergence of iterative solvers. Given a linear system Ax = b,
applying a preconditioner M means to solve the new equation AM−1Mx = b as:{

AM−1y = b

Mx = b

where cond(AM−1) << cond(A).

3.2.1 Preconditioners used on case study

In our analysis, we have compared the performances of the following preconditioners:
(i) Jacobi ( Mij = Aij i = j, 0 otherwise); (ii) Block Jacobi (block diagonal matrix) [9];
(iii) Multigrid Methods [10].

Besides the computation of the matrix M , the use of preconditioners increases the num-
ber of operations performed per iteration; however, the number of iterations necessary to
converge is highly reduced.
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Factorization LU Cholesky QR
Sparse Matrix x x x

Not Symm x - x
Not Pos.Def x - x

Not A> x x x

Table 2: Factorization methods comparison.

3.3 Direct methods

Direct methods allow us to compute the exact solution of the input linear system and
generally involve the:

• graph partitioning : the nodes of a graph are reordered in p roughly equal parts, such
that the number of edges connecting the nodes in different parts is minimized [4].
Several techniques exist: spectral methods, algebraic methods, multilevel graph. The
goal is to optimize the sparsity pattern and to reduce the fill-in after the factorization;

• matrix permutation: matrix rows and columns are permuted, according to graph parti-
tioning output. When performing a column permutation, the solution also is permuted;

• symbolic analysis: it is a symbolic factorization that does not perform algebraic com-
putation; it allows to determine the non-zero structure of the factor matrices (i.e.,
triangular matrices used for the solution of Equation (7)) in terms of sparsity pattern
and stored memory;

• factorization: it computes the factor matrices; there exist several factorization tech-
niques (LU, QR, Cholesky etc.), as shown in Table 2.

In our discussion we focus on the LU decomposition, described in Section 3.3.1.

3.3.1 LU decomposition

This section is based on [3], [25] and [27], where more detailed analyses can be found.

Given a linear system Ax = b, an LU factorization refers to the factorization of the
coefficient matrix A into two factors, a lower triangular matrix L and an upper triangular
matrix U , such that:

Ax = LUx = b. (7)

This lead to solve two triangular linear systems, y = L−1x and x = U−1y, with forward and
backward substitution.

LU factors

LU decomposition can be viewed as the matrix form of the Gaussian elimination. Given
A = IA, Gaussian elimination can be applied on the second matrix in order to get U :

A(j, :) = A(j, :)−mi,j ·A(i, :), i = 1 : n j = (i+ 1) : n (8)

where mi,j = A(j, i)/A(i, i) are the multipliers. In order to keep the original matrix product
A = IA, I has to be updated as

I(j, :) = I(j, :)−mi,j · I(i, :), i = 1 : n j = (i+ 1) : n

and the matrix obtained is the L factor.
In case that one of the multipliers zero, pivoting has to be applied.
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Figure 4: Block LU.

Figure 5: Multirid scheme.

Triangular solver

L and U factors are used for solving triangular systems. If right-hand side is a vector
(Lx = y), solution can be found with TRSV (TRiangular Solve Vector) as xi = (bi −∑i−1
j=1 aijxj)/aii for i = 1 : n.
If right-hand side is a matrix (LX = Y ), solution can be found with TRSM (TRiangular

Solve Matrix) where basically several TRSV are applied: yj = TRSV (L, xj) for each column
j.

Block LU

It is possible to organize Gaussian elimination so that matrix multiplication becomes
the dominant operation; given A = LU and a block parameter r, decomposition can be
organized as per Figure 4, where A00 is a r × r matrix, A11 is (n − r) × (n − r), A01 is
r × (n− 3) and A10 is (n− r)× r.

Thus, four systems have to be solved:

• A00 = L00U00 is a LU decomposition of a r × r matrix

• A01 = L00U01 is a TRSM

• A10 = L10U00 is a TRSM

• A11 = L10U01 + L11U11, where A′ = L10U01 is a matrix-matrix product and thus
A−A′ = L11U11 can be factorized recursively, until full LU decomposition is done.

LU on sparse matrices
LU decomposition on sparse matrices introduces some critical aspects to be managed; if
an entry is zero in the original matrix A, the corresponding entry can be non-zero in the
factors; this phenomenon is known as fill-in. In order to limit the amount of fill-in, the order
in which the variables are eliminated in Gaussian elimination is critical; several techniques

12



Figure 6: LU block data distribution.

of re-ordering and permutation can be applied, such as Approximate Minimum Degree [26]
and Multilevel graph partitioning schemes [4]. Multilevel graph partitioning reduces the
size of the graph (coarsen phase) by collapsing nodes and edges, sections the smaller graph
(partition phase) and then refines the partition up to the original graph (uncoarsen phase);
Figure 5 shows the logical steps of multilevel preconditioning (left) and an example of coarsed
grid (right), where nodes are collapsed into a simpler structure. The goal of multilevel graph
technique is to partition the nodes of a graph in p roughly equal parts, such that the number
of edges connecting the nodes in different parts is minimized.

Furthermore, due to fill-in phenomenon, non-zero structure of factors matrices is un-
known a priori; thus, symbolic factorization is performed in order to define the sparsity
pattern of the LU decomposition with reduced computing complexity (with respect to the
numerical factorization). The basic idea of symbolic factorization is that, given a M sparse
matrix:

Struct(Mi∗) := k < i|mik 6= 0

Struct(M∗j) := k > j|mkj 6= 0

and the function:

p(j) :=

{
min{i ∈ Struct(L∗j)}, if Struct(L∗j) 6= 0

j, otherwise

where p(j) is the row index of the first off-diagonal non-zero in j column, if present.
It can be shown that the structure of column j of L can be characterized as:

Struct(L∗j) := Struct(A∗j) ∪
(⋃
i<j

{Struct(L∗i)|p(i) = j}
)
− {j}

that is, the structure of column j of L is given by the structure of the lower triangular
portion of column j of A, together with the structure of each column of L whose first off-
diagonal non-zero is in row j. In this way, it is possible to forecast the non-zero entries of
each column of L.

Finally, when performing the LU decomposition, only non-zero elements have to be
considered in order to exploit the sparsity of the coefficient matrix A. Several techiques
exist, which can mainly be classified in left-looking (used by SuperLU), right-looking and
multifrontal (used by MUMPS), as described in [27] and [28].

Left-looking starts from Equation 8 as a triple-nested loop aij = aij − (aikakj)/akk;
taking j in the outer loop, successive columns of L are computed one by one and the inner

13



loops computes a matrix-vector product; the column of the inner loop is affected by the
columns on the left in the matrix.

High level algorithm can be described as:

For j = 1 : n
For k ∈ Struct(Li∗)
cmod(j, k)

cdiv(j)

(9)

where cmod(j, k) is the modification of column j by column k with k < j and cdiv(j) is
the division of column j by a scalar.

Data distribution
On the parallel implementation, the direct methods used in case study distribute data on
cyclic block matrices; data are assigned so that each process communicates only with its
neighbours. Blocks can be of different size, on the basis of non-zero patterns; Figure 6 shows
an example of block distribution among processes.
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4 High Performance Computing

Parallelism allows us to distribute data and computation, exceeding limits of memory and
reducing computation time. In order to take advantage of parallelism, several parallel scien-
tific libraries offer basic routines of linear algebra; in this way, the user can focus on analysis
topics, assigning low level operations to the libraries.

As shown in Figure 7, scientific libraries for the solution of linear systems can be struc-
tured on three logical levels, based on the user interaction and the level of operations per-
formed:

• user operates at high level, selecting a solver and passing the coefficient matrix and
the right-hand side array to the library;

• scientific libraries implement the algorithm and sets the data indices to be distributed;

• low level libraries perform basic linear algebra operation (BLAS) and data communi-
cation (MPI).

Figure 7: Logical vision of parallel scientific libraries.

This chapter is divided in two parts: Section 4.1 gives a short introduction to paral-
lel computation and scientific libraries while Section 4.2 describes software, hardware and
metrics used for the analysis of the case study.

4.1 Parallel scientific libraries for algebraic operations

Numerical linear algebra is often the heart of many engineering and computational science
problems; the scientific libraries provide the building blocks for the efficient implementation
of more complex algorithms, such as the solution of linear systems of equations, linear least
squares problems and eigenvalue problems. In order to exploit hardware improvements
and parallel resources, the implementation of parallel software libraries have been evolved
considering also the specific features of the architectures established during the years. For
example, important aspects are a proper exploitation of the memory hierarchy and the
arithmetic density, which can have a significant impact on the execution time [33].

In the following paragraphs a short introduction to parallel computing, memory hierar-
chy, basic linear algebra libraries and an explanation of parallel matrix computation will be
described.
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Figure 8: Data Distribution.

Parallel computation
Parallel computation is a type of computation in which many calculations or the execution
of processes are carried out concurrently; large problems can be divided into smaller ones,
which can then be solved at the same time. Parallelism can involve only data distribution
(Single Instruction Multiple Data) or data and tasks (Multiple Instruction Multiple Data);
in this paragraph, data distribution will be described.

Two main paradigms are considered: shared and distributed memory; these two paradigms
follow the architectural evolution of hardware resources. A hybrid approach consists in dis-
tributing computation among several processes and then each of these exploit shared memory
computation.

In distributed memory systems, each processor has a local memory and executes its own
program; the program can alter values in the executing processor’s local memory and can
send data in the form of messages to the other processors in the network. The interconnection
of the processors defines the network topology (ring, 2D mesh, torus, tree etc.) In shared
memory systems, communication among processors is achieved by reading and writing to
global variables that reside in the global memory [3]. Hybrid paradigm uses distributed
memory approach among nodes and shared memory inside each node.

Distributed memory paradigm allows high scalability and portability, but the explicit
communication can create load balancing problems; shared memory paradigm allows im-
plicit communication and dynamic load balance, but it can work only on shared memory
resources and data access consistency has to be managed [29]. Furthermore, while dis-
tributed paradigm can be used in shared memory resource, it is not possible the opposite.

The choice of shared, distributed or hybrid paradigm depends on the problem to be
solved and on the available resources (hardware and software) and it affects performances.
In tested algorithms, the parallelism is applied at data level; this means that the data are
splitted among processes. The way data are distributed affects communications and load
balance; there exist several ways of distributing data, as reported in Figure 8.

Scientific libraries used in this work use row block distribution (PETSc) and cyclic block
distribution (SuperLU).

Memory hierarchy
The memory hierarchy divides computer storage into a hierarchy based on the response
time. The main advantage of this memory configuration is that those data needed for
computation can be allocated into contigous memory location near the processing unit, in
order to access them very quickly. Memory hierarchy affects performances in computer
architectural design, algorithm predictions and lower level programming constructs; in most
computers, performances of algorithms can be dominated by the amount of memory traffic,
rather than the number of floating-point operations involved. The movement of data between
memory and registers can be as costly as arithmetic operations on the data; for this reason
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Figure 9: Memory Hierarchy Pyramid.

an important parameter is represented by the arithmetic density that may provide a metric
to data access efficiency of the algorithm. Figure 9 shows the different levels of memory:

access time decreases as we go closer to CPU register, i.e. where the data is needed.
Quicker memories are more expensive; for example, fixed rigid disk has an approximate cost
of 0.02−2$/GB, solid-state disk has 4−12$/GB, main memory has 20−75$/GB [35].

Typical memory sizes are summarized on Table 3.

Memory Size
CPU register few thousands byte

L1 cache 128 KB
L2 cache 1 MB

Main memory few GB
Solid-state disk several GB
Fixed rigid disk few TB

Table 3: Memory sizes.

Basic Linear Algebra Subprograms

BLAS is a very successful example of software library and it is used in a wide range of
softwares. It is an aid to clarity, portability, modularity, and maintenance of software; it has
become a de facto standard for elementary vector and matrix operations.

BLAS identifies the frequently occurring operations of linear algebra, i.e. the building
blocks, and specifies a standard interface for them, thus promoting software modularity. To
improve performances, the optimization of BLAS subroutines can be done without modi-
fying the higher-level code that may employ them. Other peculiar features of BLAS code
are robustness, portability and readability. It is possible to identify three Levels of BLAS,
depending on the software organization; this structure is aimed to obtain a better exploita-
tion of the underlying architecture and to improve performances: BLAS1 (scalar operations
between two vectors), BLAS2 (matrix-vector operations) and BLAS3 (matrix-matrix oper-
ations). [31].

Sparse-BLAS are the counterpart of BLAS, providing computational routines for un-
structured sparse matrices. Sparse BLAS also contains the three levels of operations as in
the dense case:

• Level 1: sparse dot product, vector update;
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Figure 10: Block Matrix.

Figure 11: Matrix-Matrix product.

• Level 2: sparse matrix-vector multiply and triangular solver;

• Level 3: sparse matrix-dense matrix multiply and triangular solver with multiple right-
hand sides.

Parallel matrix computation
Matrix operations are central in both direct and iterative methods and their efficient parallel
implementation is relevant in order to achieve good performances.

For parallel matrix-matrix operation, block-cyclic data decomposition can be assumed,
as showed in Figure 10, where Bij is a nr ×nc submatrix. Matrix is distributed to nodes so
that Bij is assigned to process Pi mod r, j mod c.

Thus, assuming both A and B matrices distributed as per Figure 10, matrix-matrix
product C = AB can be performed as described in Figure 11, where each process can
perform its portion of computation.

The parallel computation can be implemented, as shown with a high-level description in
Figure 12; communications have to be performed in order to exchange data at each iteration
among processes and to collect local results into global C matrix (if needed).

Scientific libraries for parallel computation
In conclusion, the goal of parallel scientific libraries for linear algebra is to provide effi-
cient basic algebra routines, dealing with data distribution and communications in parallel
environment.

They offer to users a high level use of low level functionality (such as BLAS, MPI), in
order to get best performances without “tedious programming tasks”; parallelism is offered
in transparent way and the user does not need to call routines for data distribution or
communications because everything is managed by the scientific library.

4.2 HPC on case study

For the case study presented in this report, scientific libraries, hardware resources and
metrics used for performances evaluation are presented.
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Figure 12: Parallel Matrix-Matrix product.

Figure 13: Scientific library selection.

Software

Several parallel scientific libraries and software have been selected to evaluate perfor-
mances of solvers of sparse linear systems; these have been classified according to the fol-
lowing criteria (Figure 13):

• open-source library;

• support for matrices and algorithms, as described in Table 1;

• technical support and documentation;

• interaction with libraries for direct solvers;

• support for distributed and accelerated computation (MPI, CUDA etc.);

Libraries used for solving linear systems are:

• PETSc [18]: Linear Algebra library, with iterative methods and call routines to direct
methods;

• SuperLU [6] and MUMPS [5]: direct methods libraries;

Furthermore, other libraries have been used in order to support the analysis:

• parMetis [21] and Hypre [20]: graph permutation libraries;

• ParaView [19]: 2D and 3D scientific visualization library;
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• freeFem++ [23], dealii [24]: used for converting PDE into linear system;

• Gmsh [22]: creates mesh from CAD;

Metrics
In order to evaluate performances of scientific libraries and operations performed, several
metrics have been considered:

• Execution time (T): time of an operation;

• FLOPS : floating operations per second performed;

• SpeedUp(n): T (1)/T (n) where T (1) is time for serial execution and T (n) is time for
parallel execution with n processes;

• Efficiency : calculated as SpeedUp(n)/n;

• Granularity : the ratio of computation time to communication time.

G =
Tcomputation
Tcommunication

• Efficiency per iteration: efficiency calculated with an average time per iteration

Eit =
T (1)/T (n)

n
,

where T = T/niter

These metrics have been evaluated by taking into account several factors, such as the
solution accuracy, the matrix size and the sparsity pattern.

Resources
Tests have been performed on CINECA cluster Marconi, based on Intel Xeon product family,
on Broadwell partition; this is composed by:

• 2 x 18-cores Intel Xeon E5-2697 v4 (Broadwell) at 2.30 GHz;

• 1512 nodes, 36 cores/node. Total cores = 54432;

• 128 GB/node of RAM.

At June 2017, Marconi was in 14th position on Top500 rankning [16].
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5 Case Study - Laplace Equation Discretization

This chapter introduces the Laplace equation and its discretization used for the case study.
Section 5.1 introduces the Laplace operator while Section 5.2 describes the case study with
the discretization of the Laplace equation on 2D/3D domains with regular/irregular grids
and the corresponding coefficient matrices used for tests.

5.1 Laplace-Beltrami operator

This section is based on [32], where more detailed description can be found.

The Laplace-Beltrami operator is a differential operator given by the divergence of the
gradient of a function on Euclidean space. Given a twice-differentiable real-valued function
f , Laplace-Beltrami operator is expressed by:

−∆(f) = div(grad(f)) =

n∑
i=1

∂2f

∂x2
i

Given a domain Ω equipped with a Riemannian metric and the scalar product

〈f, g〉2 :=

∫
Ω

f(p)g(p)dp

defined on the space L2(Ω) of square integrable functions on Ω and the corresponding norm
‖ · ‖2, the Laplace-Beltrami operator satisfies the following properties:

• self-adjointness: 〈∆f, g〉2 = 〈f,∆g〉2, ∀f, g;

• positive semi-definiteness: 〈∆f, f〉2 ≥ 0, ∀f . In particular, the Laplacian eigenvalues
are positive;

• null eigenvalue: the smallest Laplacian eigenvalue is null and the corresponding eigen-
function φ, ∆φ = 0, is constant;

• locality : the value ∆f(p) does not depend on f(q), for any couple of distinct points p, q;

• linear precision: if Ω is planar and f is linear, then ∆f = 0.

Discrete Laplacian: Given a (triangular, polygonal, volumetric) mesh M := (P, T ),
which discretizes a domain Ω, where P := {pi}ni=1 is the set of n vertices and T is the con-
nectivity graph. On M, a piecewise linear scalar function f :M→ R is defined by linearly
interpolating the values f := (f(pi))

n
i=1 of f at the vertices using barycentric coordinates.

For point sets, f is defined only at P and T is the k-nearest neighbor graph.
We represent the Laplace-Beltrami operator on surface and volume meshes in a unified

way as L̃ := B−1L, where B is a sparse, symmetric, positive definite matrix (mass matrix )
and L is sparse, symmetric, and positive semi-definite (stiffness matrix ). We also assume
that the entries of B are positive and that the sum of each row of L is null. In particular,
we consider the B-scalar product 〈f, g〉B := f>Bg and the induced norm ‖f‖2B := f>Bf .
Analogously to the continuous case, the Laplacian matrix satisfies the following properties.

• self-adjointness: L̃ is adjoint with respect to the B-scalar product; i.e.,

〈L̃f, g〉B = 〈f, L̃g〉B = f>Lg

If B := I, then this property reduces to the symmetry of L;

• positive semi-definiteness: 〈L̃f, f〉B = f>Lf ≥ 0. In particular, the Laplacian eigen-
values are positive;

• null eigenvalue: by construction, we have that L̃1 = 0;

• locality : since the weight w(i, j) is not null for each edge (i, j), the value (L̃f)i depends
only on the f -values at pi and its 1-star neighbor N (i) := {j : (i, j) edge}.
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Harmonic functions The harmonic function h : Ω→ R is the solution of the Laplace
equation ∆h = 0 with Dirichlet boundary conditions h|S = h0, S ⊂ Ω. We recall that a
harmonic function

• minimizes the Dirichlet energy E(h) :=
∫
N ‖∇h(p)‖22dp;

• satisfies the locality property ; i.e., if p and q are two distinct points, then ∆h(p) is not
affected by the value of h at q;

• verifies h(p) = (2πR)−1
∫

Γ
h(s)ds = (πR2)−1

∫
B h(q)dq, where B ⊆ N is a disc of cen-

ter p, radius R, and boundary Γ (mean-value theorem).

According to the maximum principle, a harmonic function has no local extrema other than
at constrained vertices. In the case that all constrained minima are assigned the same global
minimum value and all constrained maxima are assigned the same global maximum value,
all the constraints will be extrema in the resulting field.

The problem of finding a harmonic function with Dirichlet boundary condition on the
domain Ω is a standard PDE problem and it has several applications:

• Electromagnetism: electrostatic potential;

• Thermodynamic: heat diffusion in steady-state.

5.2 Laplace operator on case study problem

For our case study, we have selected the Laplace equation with Dirichlet boundary condi-
tions: {

∆u = 0 in Ω

u = f in ∂Ω
(10)

Given a discretizaion D of domain Ω and the associated connectivity graph G, the
Laplace-Beltrami operator is discretized with the Laplacian matrix:

L(i, j) :=

{
w(i, j) j ∈ D,
−
∑
k∈D w(i, k) i = j,

which is sparse, symmetric and positive semi-definite.
On regular grids, weights w are costant and the boundary condition is set by imposing

boundary values; the coefficient matrix L̃ of the linear system can be defined as

L̃(i, j) :=

 1 i = j, i ∈ ∂D,
w(i, j) := 1 (i, j) ∈ G, i 6= j,
−
∑
k∈D |(i, k) ∈ G| i = j,

and it is sparse and positive definite.
On irregular grids, weights w depend from grid geometry and the boundary condition

is imposed with penalization techique; the coefficient matrix L̃ of the linear system can be
defined as

L̃(i, j) :=


1 j ∈ ∂D, i = j,

w(i, j) := − cotαij+cot βij

2 (i, j) ∈ G, i 6= j,
−
∑
k∈D w(i, k) i = j,

and it is sparse, symmetric and positive definite.
The linear system L̃u = g, where g depends on both the r.h.s. and the boundary values

of Equation 10, has been used for all the tests of this casy study.
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Figure 14: Sparsity patterns.

5.3 Domain and grid

2D and 3D domains have been discretized with regular grids and meshes (i.e., irregular
grids). The domain discretization affects the sparsity pattern and the non-zero fill-in of the
coefficient matrix.

As shown in Table 4, several matrices have been used for tests; elements represent the
number of nodes used for the regular grid and Fill% represents the ratio between non-zero
numbers and total elements.

Domain Elements Matrix Rows Matrix Non-zeros Fill %
Square 2048 x 2048 4 194 304 20 938 768 0.00012
Cube 128 x 128 x 128 2 097 152 14 099 408 0.0298
Cube 512 x 512 x 512 134 217 728 930 123 728 0.000005
Circle - 4 152 441 29 053 205 0.00017
Sphere - 2 094 834 33 225 967 0.00076

Table 4: Domain and grid examples.

Figure 14 shows the sparsity pattern for a regular grid on a cube domain (on the left) and
for a tetrahedalization on a sphere domain (on the right). Sparsity pattern has an impact
on data distribution among processes, MPI communications and processes work load; more
regular matrices will have good balanced processes and better scalability performances.
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6 Results

We present the scalability analysis of direct methods with two different libraries (SuperLU
and MUMPS), a comparison between several preconditioned iterative methods, in order
to identify which one offers the best performances; we also provide an analysis on large
matrices, performed only for iterative methods on regular grids due to memory limits of
FreeFem++ and SuperLU. Fixed a class of iterative solvers, we perform scalability analysis
with iterative methods, an error analysis of iterative methods (compared to direct methods)
and an analysis with multiple right-hand side terms. Finally, we analyze the impact of the
discretization properties on the sparsity pattern and solvers performances (on irregular grids,
exploiting FreeFem++ features) and the granularity varying with the number of processes
(on regular grids).

Scalability analysis has been performed at high level on regular grids (Section 6.1) and on
irregular grids (Section 6.2); a more detailed analysis has been performed on most expensive
operations, through profiling tools of libraries (Section 6.3).

6.1 Regular grids

Direct methods scalability

Scalability analysis has been performed with direct solvers, comparing two libraries:
SuperLU and MUMPS. Input data are summarized in Table 5.

Grid 128× 128× 128
Matrix rows 2 097 152

Matrix non-zeros 14 099 408

Table 5: Input data for direct methods.

Figure 15 shows the performances of both libraries, up to 576 processes (16 nodes);
MUMPS shows worse performances in terms of execution time and scalability, thus SuperLU
has been selected for further investigation.

Figure 15: SuperLU and MUMPS comparison.

Figure 16 shows the scalability results for SuperLU. Scalability can be divided in: perfor-
mances inside the node (1-3-9-18-36 processes) and performances among the nodes (36-72-
144-288-576 processes, corresponding to 1-2-4-8-16 nodes). SuperLU has a good efficiency
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Figure 16: SuperLU scalability analysis.

of 42% on one node and an efficiency of 5% on 576 processes. The main reason is that
some operations are not parallelized in the SuperLU library; since they do not scale on
processes, their impact on global computation becomes heavier when increasing the number
of processes. For further details, we refer the reader to Section 6.3.

Direct methods have a high global execution time, due to the factorization operations;
indeed, in case of a single linear system, direct methods do not have comparable performances
with respect to iterative methods. However, on multiple r.h.s. systems, they become valuable
since the factorization is performed only once and only the numerical solver is applied to
each system. Note that for direct methods, speed-up and efficiency are calculated with
respect to T (3) instead of T (1), since serial data is not available for SuperLU: the reason
is that serial approach of SuperLU is implemented in a different library and results are not
comparable.

Iterative algorithms comparison

Preconditioners and iterative solvers have been compared on the input data reported in
Table 6. These data have been selected for several reasons: the coefficient matrix has a
number of rows and non-zeros comparable with common applications (computer graphics,
engineering problems etc) [17]; with this error value, the approximation of the solution is
good; the number of processes (72 on 2 nodes) allows us to distribute the computation on
more than one node (so that intra and inter performances are both evaluated).

Grid 128 x 128 x 128
Matrix rows 2 097 152

Matrix non-zeros 14 099 408
Processes 72 (2 nodes)

Error 1e-12

Table 6: Matrix and condition for test.

Results (Figure 17) show the computation timings of five solvers coupled with three
preconditioners plus a not preconditioned case (called NONE ), in order to identify the best
combination. For each solver (x-axis), all the preconditioners have been tested (columns)
and bars show the time for the solver (blu) and for the preconditioning operations (yellow).
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Figure 17: Iterative methods comparison.

As for the preconditioners, Block Jacobi and Additive Schwartz Method (ASM) have a
very low computation time compared to iterative solvers; for this reason, their contribution
(in yellow) is very small.

As for the solvers, excluding “NONE” case , GMRES and CGR appear as the worst
iterative solvers in terms of solver time, while BICGSTAB, IBICGSTAB and TFQMR have
similar results.

On the basis of this empirical experience, BICGSTAB has been selected as iterative solver
and Block Jacobi as preconditioner for the solution of a single system; a further comparison
based on an error analysis is presented in Section 6.1. Finally, Hypre has been considered
for multiple r.h.s. tests and error analysis.

As preconditioners, Block Jacobi is a generic preconditioner that does not exploit geomet-
ric properties of the grid and it is suited for general purpose analysis. Hypre is a multigrid
preconditioner which, after an initial time of preconditioning, can have good performances
on solver routines; it has an impact on the number of iteration and on the solution accuracy.

As solver, BICGSTAB is an iterative method based on Lanczos iteration (Appendix A)
and it is one of the most used iterative solver on literature [15].

Iterative methods scalability

Scalability analysis has been performed on the same conditions (Table 6) and the results
are reported in Figure 18.

BICGSTAB shows good performances and scalability results up to 288 processes; a poor
scalability at 576 processes is due to the increase of MPI messages and to the reduction of
MPI messages’ length, as detailed in Section 6.3. Furthermore, the overhead of communica-
tions leads to a reduction of granularity; due to all these factors, this algorithm is not able to
scale efficiently when 576 processes are reached. As described in paragraph below, increasing
the matrix dimension allows us to improve performances and to have good scalability results
up to 64 Marconi nodes (2304 processes).

Scalability can be divided in: performances inside the node (1-3-9-18-36 processes) and
performances among the nodes (36-72-144-288-576 processes, corresponding to 1-2-4-8-16
nodes). Efficiency inside a single node is 24%, at 8 nodes (288 processes) is 19%, while
performances reduces with 16 nodes (576 processes) with an efficiency of 9%. Compared
to ideal curves (red line in all graphs), the decrease of performances can be observed at
the increase of processes used; the main reason is the increase of MPI communications
on some operations of the algorithm, which will be detailed in Section 6.3. Furthermore,
Efficiency per iteration extracts the impact of convergence (i.e., the increase of the number
of iterations), since it considers an average time per iteration. In this case, efficiency with
36 processes is 35% while efficiency with 576 processes (16 nodes) is 19%. This reduction of
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Figure 18: Iterative methods performances.

efficiency is due only to finer-grain granularity, whereas the overhead of MPI communications
over computation causes cache inefficiency and leads to poor scalability performances.

Analysis on large matrices
In order to stress algorithms and scalability, we have analyzed the performances on large

matrices (2D and 3D) with a high number of processes (up to 2304 processes, 64 processes).
Matrices have been chosen according to the maximum dimension reached by common

applications (as described in section 6.1−Direct methods scalability). Results (Table 7) show
good performances and scalability, even with a high number of processes. BICSTAB can
solve a 1 billion non-zeros matrix in less than one minute with 1152 processes; furthermore,
it scales very well passing from 32 to 64 nodes. As previously anticipated, this test confirms
that the previous inefficiency with 576 processes was caused by a too fine-grained granularity
and that, increasing the matrix size, the algorithm still scales on 64 nodes.

Domain Grid Matrix Rows Matrix non-zeros Process Solver Time MFLOPS

Square 4096 x 4096 16 777 216 83 820 560
1152 16.06 328 414
2304 11.89 535 280

Cube 512 x 512 x 512 134 217 728 930 123 728
1152 51.23 167 534
2304 19.5 453 828

Table 7: Large matrices.

Error analysis
In order to compare direct and iterative methods, we have analyzed the approximation

error by comparing the exact solution with the computed solution as

xnorm =
‖xground truth − xcomputed‖2

‖xground truth‖2

The solution of direct methods is considered as a baseline, since it computes exact solution
(unless approximation errors). As exit condition of itherative methods (e.g., maximum
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Figure 19: Error on iterative methods.

number of iterations, solution divergence), we have considered the relative error

‖Lu− g‖2
‖g‖2

< ε.

Decreasing ε, we expect that iterative methods reach an accuracy comparable with direct
methods in terms of approximation accuracy, with an impact on the number of iterations
and the computational time.

Tests have been performed on the matrices reported in Table 5 with one process only,
since IDR(s) parallel implementation was not available. Figure 19 compares the approxi-
mation accuracy of several solvers without preconditioning; horizontal lines are the xnorm
of direct methods (for both SuperLU and MUMPS), which can be considered as baseline.
Iterative methods have similar results in terms of error on solution, even if BICGSTAB has
shown best results.

Figure 20 shows a comparison of BICGSTAB with two preconditioners (Block-Jacobi
and Hypre) and without preconditioner, for different values of ε (10−8, 10−12, 10−15). The
baseline is the horizontal line, which is reached at ε = 10−15. Preconditioners are represented
in order to show different behaviours, not only in terms of solver time, but also in terms
of approximation accuracy. In particular, Hypre, which has a higher time due to a strong
preconditioning phase, allows us to reach a very accurate solution. However, Block-Jacobi
offers a good performance in terms of approximation accuracy, considering that it is a general
purpose preconditioner and its execution time is negligible. On the basis of this analysis,
the choice of the preconditioner depends on the required solution accuracy.

Figure 21 shows the relationship between the approximation error on the solution (circle
mark) and solver time (bar) for different ε; with ε varying from 10−8 to 10−15, solution error
reaches the order of direct method but the solver time is doubled. In this graph, only Block
Jacobi and BICGSTAB are showed, but all the other solvers/preconditioners have a similar
behaviour.

To conclude, the final choice of ε can be based on the required precision on the computed
solution, taking into account that a precision comparable with direct methods is payed on
the solver time.
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Figure 20: Preconditioners comparison. Figure 21: Solver time and iterations comparison.

Multiple r.h.s.
Direct methods become valuable in case of systems with multiple right-hand side terms
(e.g., in a time-depending problem), since most of the operations (factorization, column
permutation of the coefficient matrix) are performed only once while the solution is computed
for each r.h.s.. On the contrary, iterative methods solve every time a new linear system,
even if the coefficient matrix is not changed; preconditioning is the only operation which is
performed once. The Block-Jacobi preconditioning is negligible in terms of time while if a
strong preconditioner is chosen, execution time for preconditioning becomes relevant.

Both methods have been compared with a set of r.h.s. terms: iterative methods have been
compared with two different preconditioners (Block Jacobi and Hypre) and with two ε values,
passing one r.h.s. term per time; direct methods have been compared with two approaches:
r.h.s. arrays passed individually or as a matrix (i.e., passed only once.) Furthermore,
iterative methods have been evaluated also by solving t linear systems at the same time,
placing t matrices in a global block matrix and finding as result a vector of t solution, as
showed in Equation 11. 

A1 0 ... 0
0 A2 ... 0
... ... ... ...
0 0 ... At

 ·

−→x1−→x2

...
−→xt

 =


−→
b1−→
b2
...
−→
bt

 (11)

Figure 22 shows results, with a different number of r.h.s., of each approach; iterative
methods have good performances if ε is low (ε = 10−8), giving results comparable with
direct methods (passing r.h.s. terms once per time). With this error, iterative methods (blu
line) have a smaller slope than direct methods (red line); the reason is that even if the solver
phase (in direct methods) performs less operations than an iterative method, direct method
works on factorized matrices, which have more non-zero elements. Thus, there is an ε limit
where iterative methods become more performing.

Otherwise, when increasing the solution accuracy of iterative methods, the slope of direct
methods becomes lower than iterative one and direct methods become more efficient after
a certain number of iterations.

The second option for the direct methods (passing all r.h.s. terms once, as a matrix)
solves the block linear system AU = B where the solution is a matrix (each column is the
solution to the linear system with a different r.h.s.). With this approach, direct methods
have the best performances with respect to all the other methods; however, this approach
has some limits in terms of maximum r.h.s. passed together, as this vector is dense; an
empirical limit, for this test, is 500 r.h.s..

Since direct methods can have memory limits with large matrices, iterative methods are

29



Figure 22: Multiple r.h.s..

a very good alternative, if a lower precision on the result is acceptable.
Finally, Figure 23 shows a comparison between iterative methods (Block Jacobi +

BICGSTAB) of one system per time and iterative methods (Block Jacobi + BICGSTAB)
of a block matrix as previously explained in Equation 11. For two different ε values, both
approaches have similar performances; anyway, the block method shows a memory limit at
100 linear systems simultaneously; thus, first approach should be used.

6.2 Irregular grids

Irregular grids have been constructed with an external software (FreeFem++); a sphere
has been selected as input domain, then the Laplace equation has been discretized on the
tetrahedralization of the sphere and the coefficient matrix (Table 8) and r.h.s. have been
extracted and passed to PETSc.

Domain Sphere
Matrix rows 2 094 977

Matrix non-zeros 33 225 967
Fill in 0.0007%

Table 8: Irregular domain.

As already described in Section 5.3, this matrix (Figure 14, right) has several differences
with respect to the regular case: the number of rows is basically the same but the number
of non-zero elements is more than the double; the matrix sparsity pattern is irregular due
to the arbitrary connectivity of the underlying mesh and also to FreeFem++ node ordering.
All these elements have an impact on performances and scalability.

Direct methods scalability

Tests have been performed with the following direct solvers: SuperLU and MUMPS. On
the basis of the results (Figure 24), SuperLU has a better performance than MUMPS, also
on irregular grids.
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Figure 23: Multiple r.h.s. - block matrix comparison.

Figure 25 shows the results of SuperLU, which has a good performances on one node
(64% efficiency) and 8% with 576 processes (16 nodes). The reason of this lower efficiency
is that some operations (Section 6.3) are not parallelized, as already described for regular
grids.

Global execution time is greater than on regular grids, but scalability intra/inter nodes
is even better, due to increased number of non-zeros to be computed. Indeed, direct solvers
have similar performances in terms of MPI behaviour and load balance between regular
and irregular grids; column permutation and block data distribution allow us to reduce
inefficiencies caused by irregular grids.

Iterative algorithms comparison
In Figure 26, preconditioners and solvers have been compared with 72 processes and an
accuracy of order 10−12. Only two preconditioners have been analyzed for this comparison,
on the basis of previous results on regular grids: Block-Jacobi and Hypre. Block-Jacobi has
a very low execution time and its contribution is not visible on the graph, indeed it has
been selected as preconditioner (for the “generality and performance” properties already
described in the analogous section for regular grids). Hypre, as for regular grids case, has
a high precondition time; its use is not relevant on single system but becomes valuable on
multiple r.h.s..

BICGSTAB, IBICGSTAB and TFQMR solvers (all based on Lanzcos Bi-orthogonalization
and transpose free) have a similar execution time; BICGSTAB has been used as iterative
method (in order to have results comparable with those ones on regular grids), but all the
solvers are valuable for this kind of analysis. CGR method was not able to converge to the
solution with both Block-Jacobi and Hypre preconditioners.

Iterative methods scalability
Concerning scalability analysis (input data reported in Table 8, results in Figure 27),
BICGSTAB shows an efficieny of 9% on one node and an efficiency of 8% with 144 pro-
cesses (4 nodes). Then, with 288 and 576 processes (respectively 8 and 16 nodes), there is
a heavy loss of performances (0.1% efficiency). Efficiency per iteration with 36 processes is
28% while efficiency with 576 processes (16 nodes) is 0.4%. This efficiency at 36 processes
shows an improvement, since it extracts the contribution of the increased iteration numbers.
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Figure 24: SuperLU and MUMPS comparison on irregular grids.

Figure 25: SuperLU scalability analysis.

Otherwise, with 576 processes the increase of MPI messages and the reduction of MPI mes-
sages’ length, combined with the fine-grained granularity, lead to inefficiency; in Section 6.3,
we will analyze how single operations contribute to efficiency decrease.

Comparing scalability results of regular and irregular grids, it is possible to affirm that:

• Solver time is higher with respect to regular grids, as the increased number of non-zero
elements implies more operations to be performed;

• efficiency is reduced (comparing 288 nodes, regular grids have 19% while irregular grids
have 9%). This dissimilarity is caused by a different sparisty pattern of the coefficient
matrix, which implies an unbalanced load and an increase of MPI communications.

Analysis on large matrices
This analysis has not been performed on irregular grids, due to some limits of FreeFem++
for the generation of large irregular grids on the chosen domain.
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Figure 26: Iterative solvers and preconditioner.

Figure 27: Irregular grids scalability.

Multiple r.h.s.
Iterative methods have been compared with two different preconditioners (Block Jacobi and
Hypre) and ε = 10−8; direct methods have been compared with two r.h.s.: a set of vectors
(passed once per time) and a matrix (passed only once). Results (Figure 28) show that
iterative methods are not competitive with respect to direct methods on multiple r.h.s.,
even with low ε values. This aspect is due to a higher Solve Time of iterative methods on
irregular grids (with respect to regular grids), while Solve Time of direct methods is basically
the same. However, direct methods have memory limits on high-dimensional problems due
to increased number of non-zero elements after the factorization; indeed, the choice between
direct/iterative methods has to be based on the matrix size and if its sparsity allows direct
methods. If we apply iterative methods, then a strong preconditioner allows us to reduce
the number of iterations and the computation time.

Finally, the use of r.h.s. passed as a matrix is the best solution in terms of performances;
however, analogously to the case of regular grids (Section 6.1), some size limits may occur
with this approach.

The block approach for iterative method has not been used on irregular grids, due to
memory limits on FreeFem++.
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Figure 28: Multiple r.h.s. with irregular grids.

Analysis on matrix sparsity pattern
FreeFem++ offers several possibilities, such as changing the input domain, PDE, discretiza-
tion methods. In particular, the polynomial degree of the FEM discretization affects the
sparsity pattern of the coefficient matrix while increasing the approximation accuracy and,
consequently, the solver time. FreeFem++ implements several types of basis functions [23];
most used basis functions are P<n> where n is the order of the polynomial approximation
of the solution to the PDE. As shown in Figure 29, increasing the polynomial order affects
the number and the structure of non-zeros of the coefficient matrix, besides its size.

Figure 29: Different polynomial basis.

Polynomial Basis Nodes Elements Non-zeros Solver time [s] Iterations Solution accuracy
P1 86 425 86 425 602 969 0.11 358 5.0 · 10−6

P2 86 425 344 697 3 894 474 0.52 689 2.3 · 10−10

P3 86 425 774 817 13 148 592 3.32 938 6.0 · 10−10

P4 86 425 1 376 785 32 319 425 10.21 1260 1.7 · 10−9

Table 9: Polynomial basis performances.
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Tests (Table 9) performed with fixed input parameters (Circle domain, BICGSTAB +
Block-Jacobi solver, ε = 10−12, 72 processes) show that, fixed the nodes of the grid, the
coefficient matrix size and its non-zero numbers increase when passing from degree 1 to
degree 4; this leads to an increase of the number of iterations and solver time. The approx-
imation accuracy of the solution (computed for nodes elements only) improve significantly
when passing from degree 1 to degree 2, while it remains unchanged with degree 3 and 4.

The choice of the polynomial degree depends on the target approximation accuracy of
the solution, taking into account the increased computational cost and the execution time
needed.

6.3 Profiling

PETSc and SuperLU offer the possibility to go deeper into the analysis of the alghoritms, in
order to better understand the scalability properties in terms of performed operations. Our
analysis has considered regular and irregular grids for both methods and Table 10 shows the
matrices used for the profiling.

With iterative methods, the whole program is divided into three sections: Main Stage is
the data load, Preconditioning calculates the preconditioned matrix and Solve is the solver
algorithm (Figure 30). Each section is divided into functions (MatMult, MatSolve etc.);
for each function we report: the number of calls to each function, the time spent and the
FLOPS (with the ratio between maximum and minimum among processes), the number
of messages (MPI communications), the average length of messages and the number of re-
duction operation. Percentages refer to these five data, divided into global percentage (the
whole program) and stage percentage. Finally, MFLOPS are calculated.

With direct methods, SuperLU offers a less detailed profiling; statistics provided by this
library include execution time and MFLOPS for main operation (i.e. solver, factorization,
column permutation, matrix distribution).

Domain Sphere Cube
Grid - 128x128x128

Matrix rows 2 094 977 2 097 152
Matrix non-zeros 33 225 967 14 099 408

Table 10: Domain for Profiling.

6.3.1 Iterative methods

Operations for iterative methods could be divided into three phases, as shown in Figure 30;
only Solve stage will be analyzed, since it holds most of the time (85 % in the example).
Results refer to 72 processes.

For regular grids, Pareto chart for the solver operations, in percentage on total solver
time (Figure 31), shows that most of the time is spent in MatMult and MatSolve operations,
that are called twice per iteration. A minor but significant impact is given also by scalar
product operations (VecDot and VecDotNorm2 ), which are called respectively twice and
once per iteration.

For irregular grids, MatMult takes most of the time, with a significant impact on scala-
bility (Figure 31).
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Figure 30: Profiling stages.

Figure 31: BICGSTAB Pareto.

These operations have been analyzed in terms of scalability, MPI communications and
reduction operations. It is also analyzed the Ratio, i.e. the ratio between maximum and
minimum process (in terms of execution time); this metric is relevant because unbalanced
operations have an impact on the granularity and, consequently, on the efficiency; infact
high Ratio implies an increase of processes’ idle time and a finer-grain granularity.

MatMult is the matrix-vector product and it is called twice in the BICGSTAB algorithm.
MatMult has both computational and communication parts.

Time (max among processes) and max/min ratio between processes are shown in Table
11.

As shown in Figure 32 on left side, on regular grids MatMult has an efficiency of 12%
on 36 processes and of 8% with 576 processes (16 nodes); efficiency per iteration is 17.8%
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Regular Grids Irregular Grids
Process Time(max) Ratio Time(max) Ratio

1 5.23 1 66.2 1
3 2.66 1 61.6 1
9 1.54 1.1 52.1 1.2
18 1.46 1.1 56.0 1.2
36 1.16 1.5 38.5 1.1
72 0.615 1.3 20.6 1.3
144 0.351 2.2 12.3 1.3
288 0.117 4.3 15.9 1.7
576 0.113 4.4 175.0 12.6

Table 11: MatMult.

Figure 32: MatMult efficiency.

on 36 processes and 16.9% on 576 processes. Efficiency is improved if slower convergence is
not considered (i.e., efficiency per iteration metric).

This efficiency result is mainly due to the increase of MPI messages and to the reduction
of messages length, as shown in Figure 33. On the left, it is reported the scalability of
MatMult operation compared with ideal scalability; on the right, it is reported the number
of MPI communications (blu bar) and Average Message Length (yellow Bar). The ratio
remains well balanced and does not have a significant impact on efficiency.

As shown in Figure 32 on right side, on irregular grids MatMult has an efficiency of 4.8%
on 36 processes and of 1.4% with 576 processes (16 nodes); even efficiency per iteration has
poor efficiency, when a high number of processes is used.

With 576 processes, MatMult has a huge increase of time, mainly due to the number
of MPI communications and message length (Figure 34); in fact, the number of messages
is two order of magnitude greater than the regular grids case, while the average message
length is one order of magnitude lower. Furthermore, there is a significant increase of the
ratio value, which has an impact on granularity. This result can be identified as the main
cause of poor performances, as previously shown in Figure 27.

MatSolve solves a linear system with factored matrix and it is called twice in the BICGSTAB
algorithm. Time (max between processes) and ratio (max/min between processes) are shown
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Figure 33: MatMult scalability on regular grids.

Figure 34: MatMult scalability on irregular grids.

in Table 12. MatSolve has very good scalability performances for both regular (Figure 35,
left side) and irregular (Figure 35, right side) grids, due to the absence of MPI communi-
cations and to the reduction of computing time; MatSolve can be considered as a massively
parallel operation.

As shown in Figure 36, on regular grids, efficiency is 25.4% on 36 processes and 29.1%
with 576 processes (16 nodes); performances are very good, specially on scalability results
among processes. On irregular grids, efficiency is 125% on 36 processes and 113% on 16
nodes; in this case, there is a superlinear scalability up to 576 processes. Results are even
better when considering efficiency per iteration, with 61% on regular grids with 576 processes
and 313% on irregular grids with 576 processes.

The reasons of such good performances depends on the kind of operation (massively
parallel) and very high performing resources, which both lead to cache efficiency [38].

It is noted that the communication part is all managed by MatMult operation, letting
to MatSolve the computational part only.
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Regular Grids Irregular Grids
Process Time(max) Ratio Time(max) Ratio

1 7.68 1 67.8 1
3 3.54 1 24.7 1.2
9 1.52 1.1 5.26 1.1
18 1.28 1.2 2.9 1.5
36 0.838 1.7 1.5 2.3
72 0.351 2.1 0.56 2.9
144 0.148 4.7 0.354 3.3
288 0.0575 4.8 0.186 5
576 0.0458 5.8 0.104 5.2

Table 12: MatSolve.

Figure 35: MatSolve scalability.

VecDot is the scalar product between two vectors and it is called twice in the BICGSTAB,
plus a call to VecDotNorm2, which also calculates the norm of the vector w. VecDot has
a computational part (product and sum operation) and a communication part (reduction
of each process’s result). Time (max between processes) and ratio (max/min between pro-
cesses) are shown in Table 13

On regular grids, VecDot has a poor efficiency and efficiency per iteration (respectively
0.7% and 1.6% with 576 processes, as shown in Figure 37 on left side), and execution time is
mainly affected by the load distribution on processes more than reduction numbers (which
depends only on the number of iterations). As empirical analysis, there is an increase
of execution time with 36 processes due to the increased ratio, while the execution time
reduction from 144 to 288 processes is due to the improved load balance and the reduction
of Reduction operations; however, there is not a clear correlation between these three metrics.
Figure 38 reports VecDot scalability on regular grids.

On irregular grids, efficiency and efficiency per iteration are very low (both below 0.01%
with 576 processes, as shown on Figure 37 on right side); VecDot execution time is almost
costant till 144 processes, has a slight increase up to 288 processes and at 576 unbalanced
load has a huge impact on time, as reported in Figure 39. Also in this case, excluding the
576 processes case, there is not a clear correlation between reductions, ratio and execution
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Figure 36: MatSolve efficiency.

Regular Grids Irregular Grids
Process Time(max) Ratio Time(max) Ratio

1 0.544 1 0.784 1
3 0.312 1.2 2.85 4.8
9 0.228 1.8 3.55 12.6
18 0.235 2.3 3.7 14.2
36 0.419 6.7 3.25 1.9
72 0.219 3.1 2.34 11.4
144 0.223 3.2 1.21 11.9
288 0.113 2.7 10.9 1.5
576 0.125 2.3 81.5 176

Table 13: VecDot.

time.

Granularity Figures 40 and 41 show scalability of regular and irregular grids respectively,
divided into operations with MPI Call (in blu) and operation with computing only (in
yellow).

For both regular and irregular grids, the ratio between communication and computing
time increases with the processes, leading to a reduction of granularity. Communication
includes vector scattering operation (called by MatMult) and reduction operation (called by
VecDot and VecNorm operations).

Granularity becomes coarser as matrix dimension is increased or when, with a fixed
matrix dimension, a lesser number of processes is used; indeed, Figure 42 shows percentage
balance of computing only operations (in yellow) and operations with communications (in
blu). Results are shown for three matrix dimensions and each column shows the number of
processes used (144, 288 and 576).
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Figure 37: VecDot efficiency.

Figure 38: VecDot scalability on regular grids.

6.3.2 Direct methods

PETSc environment calls external libraries (SuperLU and MUMPS), whose level of detail
for single algebraic operations is minor.

Figure 43 and Figure 44 show, for regular and irregular grids respectively, performances
and scalability results of both libraries, with five principal steps stacked:

• distribution performs a cyclic block data distribution among processes (Figure 6);

• column permutation reorder the columns of the coefficient matrix, in order to optimize
the number of non-zero elements after the factorization;

• symbolic factorization provides the number (and the position) of non-zero elements on
LU matrices;

• factorization performs the numeric factorization of the coefficient matrix, in order to
compute numerically the factor matrices;
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Figure 39: VecDot scalability on irregular grids.

Figure 40: Granularity on regular grids.

• solver computes the solution of the triangular systems.

However, since now on only SuperLU will be commented, since it achieves better perfor-
mances (as described on Figure 43 and Figure 44).

Two operations are not parallelized: symbolic factorization and column permutation.
In fact, their time is constant with processes increase. Data distribution impact is not
significant since it is performed once and its execution time is much lower than factorization.

Analizying Solver and Factorization, with regular grids the factorization scalability has
a good efficiency (56% with 36 processes, 12% with 576 processes); Figure 45 shows time
scalability compared to ideal time (left) and efficiency decrease (right): scalability results
are good up to 576 processes.

Solver operation has 24% efficiency with 36 processes, 6% efficiency with 288 processes
(8 nodes) and a time increase with 576 processes (with an efficiency of 1.8%, as reported in
Figure 46).

Table 14 reports the increase of non-zero elements between A and L + U , with growth
factor of 297. Even if multigraph analysis and column permutation are performed, the
increase of non-zeros is significant; this has some consequence:
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Figure 41: Granularity on irregular grids.

Figure 42: Granularity on large matrices.

• Data space for LU matrices increases and this could lead to memory limits with direct
methods. For example, SuperLU was not able to factorize a coefficient matrix coming
from a 256× 256× 256 regular grid;

• The Solve operation is performed on a bigger matrix (in terms of non-zeros) than
iterative methods. For this reason, even if the Solve operation has a lower computation
than iterative methods, it performs more floating operations due to a larger number
of non-zero elements. This is why it could happen that, as explained previously in
Figure 22, iterative methods have a minor slope with respect to direct method.

A L+U Ratio
14 099 408 4 209 973 954 297

Table 14: LU elements.

On irregular grids, factorizazion has also very good performances (90% efficiency on the
node, 30% among 16 nodes), as shown in Figure 47. Like regular grids, factorization has
both a phase of computation and communication and it gives good scalability results up
to 576 processes. Solver operations have similar performances to regular grids case, with
a 32% efficiency on the node, 12% efficiency among 8 nodes and a time increase with 16
nodes (Figure 48), with an efficiency of 3% on 576 processes. Table 15 reports the increase
of non-zero elements, with a growth factor of 228.
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Figure 43: Direct methods performances on regular grids.

A L+U Ratio
33 225 967 7 615 661 965 228

Table 15: LU elements.

Figure 44: Direct methods performances on irregular grids.
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Figure 45: Regular grids factorization.

Figure 46: Regular grids solver.

Figure 47: Irregular grids factorization.

45



Figure 48: Irregular grids solver.
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7 Scientific visualization

Once a linear system is solved, PETSc prints out data in different format: ASCII, VTK etc.
Data visualization can be performed with several tools and functions.

7.1 Matlab data Visualization

Matlab can print results on regular grids (2D and 3D), with different functions:

• 2D domain: curve level and image with scaled color (Figure 49);

• 3D domain: isosurfaces and slice function (Figure 50).

Figure 49: 2D domain visualization.

Figure 50: 3D domain visualization.

7.2 Workflow and Paraview visualization

PETSc can exploit other libraries in order to have a global environment where to solve and
visualize PDEs.

Workflow presented in Figure 1 can be reviewed as Figure 51, where:

47



Figure 51: Workflow with SW.

Figure 52: Laplace solver on a CAD model.

• Gmsh: reads a cad file and create a mesh on it;

• dealii : defines a PDE in variational form, transforms it into a linear system and solves
it; then, prints the solution to a datafile;

• ParaView : reads a .vtk file printed by dealii and visualize the solution.

Following this workflow, Laplace equation can be solved and visualized on a CAD model,
as shown in Figure 52.
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8 Conclusion

Parallel implementations of direct and iterative methods for solving sparse linear systems
have been compared on Marconi cluster and their performances have been analyzed in terms
of efficiency and accuracy on different input conditions.

On 2D/3D regular grids, direct methods (SuperLU) have very good efficiency results;
however, the elevated execution time for factorization makes this method not applicable
for a single linear system; furthermore, LU matrices can involve memory limits. Only two
operations are parallelized: factorization has very good efficiency results, thanks to data
distribution and column permutation performed upstream; solver operation has a very small
execution time but scalability performances are slightly worse, due to the overhead of the
communications with respect to the computation.

For iterative methods, from a comparison of several preconditioner-solver combinations,
Block Jacobi - BICGSTAB have resulted the most performing; they are general purpose
preconditioner-solvers with very good performances in terms of execution time. Scalability
results are moderately good: Block Jacobi - BICGSTAB efficiency decrease quickly, also due
to the increased number of iterations.

Most expensive operations have been identified in MatMult, MatSolve and VecDot. The
former has both computation and communication parts and its efficiency decrease with
number of MPI communications increase and message length reduction; the latter is a
massively parallel operation, with good efficiency results. Finally, VecDot has shown bad
scalability results, only in part affected by the number of iterations and load balance among
processes.

On large matrices, Block Jacobi - BICGSTAB still scales with 2304 processes (64 nodes)
on Marconi cluster: granularity becomes coarser as coefficient matrix size is increased or
number of processes is reduced.

In case of multiple r.h.s., direct methods are preferable only if high precision is required,
otherwise iterative methods have still better performances (with both Block Jacobi and
Hypre preconditioners); this result is interesting because, even if Solve operation of direct
method has less computational operations than an iterative method, it works on more dense
matrix and this leads to results just described. Two additional approaches also have been
evaluated: column arrangement of r.h.s. in a matrix and block approach of coefficient matrix;
only first approach has shown improvement on results while both have memory limits that
have to be taken into account.

The error analysis comparison between direct and iterative methods has shown that it-
erative methods can reach the solution accuracy of direct methods, at the cost of number of
iterations and consequently execution time. From a comparison of preconditioners in terms
of accuracy, Hypre has given best results even if Block Jacobi has comparable results.

On irregular grids, the increased number of non-zeros leads, for both direct and iterative
methods, to an increase of execution time.

Direct methods have similar results as regular grids, in terms of efficiency. Factorization
has even better results, due to increased density of coefficient matrix; solver operation has
similar results to regular grids case: execution time is very low but efficiency result is poor
due to the overhead of communications with respect to computation.

Iterative methods have shown good scalability properties up to 144 processes and an
efficiency decrease at 576 processes; the comparison among algorithms and preconditioners
has given similar results to the regular grids one. Also on irregular grids, most expensive
operations have been identified in MatMult, MatSolve and VecDot. First one has very poor
scalability results at 576 processes due to number of MPI communications and message
length, which are respectively three order more and one order less than regular grids ones;
second one has superlinear scalability results, due to the kind of operation (massively paral-
lel) and resources used (cache memory size). Finally, VecDot has shown very poor scalability
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results, due to the number of reduction operations, load balance among processes and also
the kind of operation itself. Granularity is well balanced till 36 processes, after that the
overhead of MPI communications leads to bad scalability performances described.

The comparison with multiple r.h.s. has shown that direct methods have better perfor-
mances than iterative ones, even if low error and Hypre preconditioner are used.

The analysis on matrix sparsity pattern has shown the impact of non-zero structure in
terms of execution time (almost linear), iterations and approximation accuracy.

In conclusion, on regular grids iterative methods have shown good results in terms of
scalability, accuracy and multiple r.h.s.; the use of a strong preconditioner, according to these
results, does not seem necessary. Direct methods have shown very good results in terms of
efficiency; however, the high execution time for the factorization makes this method valu-
able only if many linear systems have to be solved and a high accuracy on the solution is
required, also considering that memory limits could be encountered. On irregular grids,
iterative methods have worse performances, due to the irregular structure of the matrix
that leads to an overhead of communication in some of the operations; in this case, when
multiple systems have to be solved, direct methods should be used if memory size allows it.
Otherwise, a strong preconditioner should be applied. It is anyway interesting that direct
methods on irregular grids (compared to regular grids results) have an increased execution
time but also benefits on efficiency; this is because the increased number of non-zero ele-
ments leads to a coarser granularity.

Section 7 has shown some tools (with MATLAB and Paraview) used for the visualization
of the solution; in particular, Paraview handles irregular grids and allows performing and
very customizable visualization.

PETSc library has shown very good performances, flexibility and easiness-of-use, since
it offers many routines for iterative methods (and preconditioners) and the possibility to
call some direct solvers libraries. All routines are available and accessible. PETSc performs
data reading, MPI distribution and solution gathering and it also offers the possibility to
print output in several formats. Furthermore, it gives the possibility to have both high and
low level profiling on used methods. Finally, it can call some other libraries that allow to
define PDE and solve it on domain.

Future directions
Some future developments of this work could be divided into four categories:

• Numerical analysis: study of the correlation between number of processes and itera-
tions, in case of different preconditioners (Block-Jacobi, Hypre or None);

• Performances analysis: time-depending equation could be analyzed (through FreeFem++
or dealii) on different domains; furthermore, other libraries (such as Trilinos) offer dif-
ferent implementation of numeric algorithms for preconditioning and solving; these
could be compared with PETSc performances;

• High Performance Computing : several HPC resources could be investigated (KNL on
CINECA cluster, GPU-based resources etc.)

• Algorithm development : IDR(s) algorithm is not available on PETSc; thus, starting
from Appendix B, it could be developed a parallelized version of this algorithm and
exported in PETSc.
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Appendix A BICGSSTAB

BICGSTAB algorithm is the transpose free version of the BCG, based on the Lanczos
biorhogonalization.

The algorithm, implemented by PETSc routine KSPBICGS, is reported in Equation 12:

1. r0 = b−Ax0 ; r∗0 arbitrary; r = r0

2. initialize(p0, ρold, α, ωold, v, p)
while (convergence)
3. ρ = (r, r0)
4. β = (ρ/ρold)/(α/ωold)
5. p = r − ωoldβv + βp
6. v = AK−1p
7. α = ρ/(v, r0)
8. s = r − αv
9. t = AK−1s
10. d1 = (s, t) ; d2 = ‖t‖
11. x = x+ αp
12. ω = d1/d2

13. x = αp+ ωs+ x
14. r = s− ωt
15. ‖r‖
16. ωold = ω
17. ρold = ρ
end while

(12)

As reported in Equation 12, there are two MatMult and two Matsolve operation in line
6 and 9.

These operations, called PCApplyAB, solve a triangular system y = K−1p where K is
the preconditioned matrix; then perform a matrix-vector product v = Ay.

VecDot operation (scalar product between two vectors) is performed twice, in line 3 and
7.

Then, line 10 performs the VecDotNorm2 operation (a VecDot and a Norm operation).
Line 15 performs a norm operation (used for updating the residual and verifying the exit

condition ).
Line 14 and Line 8 performs a WAXPY (W = aX + Y ) operation.
Line 11 performs an AXPY (Y = aX + Y ) and Line 13 performs an AXPBYPCZ

(Z = aX + bY + cZ) and both are collected in AXPBYCZ profiling voice.
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Appendix B IDR

Induced Dimension Reduction (IDR) is an iterative algorithm for solving linear systems,
based on Lanczos biorthogonalization; it can be considered as a generalization of BICGSTAB
algorithm. It has been introduced by [8] who has developed the code in MATLAB and
FORTRAN90.

PETSc has not implemented yet this algorithm, thus a preliminary version has been
written. This code uses PETSc routines (when possible), otherwise it uses Blas routines.
The code is working but it is not parallelized yet; anyway it is fully reported since it could
be a baseline for a future development of IDR algorithm on PETSc.

void i d rSo l v e (Mat A, Vec b , Vec xReal ) {

PetscErrorCode i e r r ;
Pet sc Int one = 1 . 0 , ze ro = 0 . 0 ;
PetscViewer viewer ;
int i , j , k ;
Pet sc Int s izeMat ;
Pe t s cSca la r a l f a = 1 , beta = 0 ;
Pet sc Int s = 3 ; //shadows
PetscReal t o l = 1e−12;
PetscReal ang le = 0 . 7 ;
PetscReal om = 1 ;
PetscReal Alpha , Beta ;
Pet sc Int i t e r = 0 ;
Pet sc Int maxIterat ion = 10000 ;
Mat P,G,U,M;
Pet s cSca la r ∗aP , ∗aG, ∗aU , ∗aM, ∗ar , ∗af , ∗aGapp ,

∗aUapp , ∗ax , ∗at , ∗axReal ; // s ca l a r from array
Pet scSca la r ∗ac , ∗av ;
Pet s cSca la r ∗deltaX ;
Vec x0 ; // i n i t i a l s o l u t i on
Vec menox ;
Vec r , f ; // r e s i d ua l
Vec D; // Diagonal ones
Vec Gapp , Uapp ;
Vec t ;
Vec v , vcopy ;
Vec c ;
Vec x ;
KSP ksp ; // So l ver Context
PC pc ; //Precondi t ioner Context
PetscReal normb ;
PetscReal normr ;
PetscReal t o lb ;

KSPCreate (PETSCCOMMWORLD,&ksp ) ;
KSPSetType ( ksp ,KSPPREONLY) ;
KSPSetOperators ( ksp ,A,A) ;
KSPGetPC( ksp ,&pc ) ;
PCSetType ( pc ,PCBJACOBI) ;
KSPSetUp( ksp ) ;
KSPSetUpOnBlocks ( ksp ) ;

//Read sizeMat
i e r r = VecGetSize (b,& sizeMat ) ;

//Create Matrix and Vectors
MatCreateDense (PETSCCOMMWORLD,PETSC DECIDE,PETSC DECIDE, sizeMat , s ,NULL,&P) ;
MatSetFromOptions (P) ;
VecCreate (PETSCCOMMWORLD, &x0 ) ; VecSetS izes ( x0 ,PETSC DECIDE, sizeMat ) ;
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VecSetFromOptions ( x0 ) ; VecSet ( x0 , ze ro ) ;
VecCreate (PETSCCOMMWORLD, &r ) ; VecSetS izes ( r ,PETSC DECIDE, sizeMat ) ;
VecSetFromOptions ( r ) ;
VecCreate (PETSCCOMMWORLD, &menox ) ; VecSetS izes (menox ,PETSC DECIDE, sizeMat ) ;
VecSetFromOptions (menox ) ;
MatCreateDense (PETSCCOMMWORLD,PETSC DECIDE,PETSC DECIDE, sizeMat , s ,NULL,&G) ;
MatSetFromOptions (G) ;
MatCreateDense (PETSCCOMMWORLD,PETSC DECIDE,PETSC DECIDE, sizeMat , s ,NULL,&U) ;
MatSetFromOptions (U) ;
MatCreateDense (PETSCCOMMWORLD,PETSC DECIDE,PETSC DECIDE, s , s ,NULL,&M) ;
MatSetFromOptions (M) ;
VecCreate (PETSCCOMMWORLD, &D) ; VecSetS izes (D,PETSC DECIDE, s ) ;
VecSetFromOptions (D) ; VecSet (D, one ) ;
VecCreate (PETSCCOMMWORLD, &f ) ; VecSetS izes ( f ,PETSC DECIDE, s ) ;
VecSetFromOptions ( f ) ; VecSet ( f , z e ro ) ;
VecCreate (PETSCCOMMWORLD, &Gapp ) ; VecSetS izes (Gapp ,PETSC DECIDE, sizeMat ) ;
VecSetFromOptions (Gapp ) ;
VecCreate (PETSCCOMMWORLD, &Uapp ) ; VecSetS izes (Uapp ,PETSC DECIDE, sizeMat ) ;
VecSetFromOptions (Uapp ) ;
VecCreate (PETSCCOMMWORLD, &t ) ; VecSetS izes ( t ,PETSC DECIDE, sizeMat ) ;
VecSetFromOptions ( t ) ;
VecCreate (PETSCCOMMWORLD, &v ) ; VecSetS izes (v ,PETSC DECIDE, sizeMat ) ;
VecSetFromOptions (v ) ;
VecCreate (PETSCCOMMWORLD, &vcopy ) ; VecSetS izes ( vcopy ,PETSC DECIDE, sizeMat ) ;
VecSetFromOptions ( vcopy ) ;
VecCreate (PETSCCOMMWORLD, &c ) ; VecSetS izes ( c ,PETSC DECIDE, s ) ;
VecSetFromOptions ( c ) ;
VecCreate (PETSCCOMMWORLD, &x ) ; VecSetS izes (x ,PETSC DECIDE, sizeMat ) ;
VecSetFromOptions (x ) ;

//Create P
i e r r = PetscMal loc1 ( s izeMat ∗ s ,&aP ) ;
for ( i = 0 ; i < s izeMat ∗ s ; i++)
aP [ i ] = rand ( ) / (double )RANDMAX;

// i n i t i a l i z e x to x0
x = x0 ;

//norm and to l e rance
i e r r = VecNorm(b ,NORM 2,&normb ) ;
t o lb = t o l ; /∗ t o l b = t o l ∗normb ; ∗/

//Residua l Ca l cu la t i on
menox = x ;
i e r r = VecScale (menox , −1);

i e r r = MatMultAdd(A,menox , b , r ) ;
i e r r = VecNorm( r ,NORM 2,&normr ) ;

//Create M
i e r r = MatZeroEntries (M) ;
i e r r = MatDiagonalSet (M,D, INSERT VALUES) ;

//Extrac t Arrays
i e r r = VecGetArray ( r ,&ar ) ;
i e r r = VecGetArray ( f ,& a f ) ;
i e r r = VecGetArray (x,&ax ) ;
i e r r = MatDenseGetArray (M,&aM) ;
i e r r = MatDenseGetArray (U,&aU ) ;
i e r r = MatDenseGetArray (G,&aG) ;
i e r r = VecGetArray (Uapp,&aUapp ) ;
i e r r = VecGetArray ( t ,&at ) ;
i e r r = VecGetArray (v,&av ) ;
i e r r = VecGetArray ( c ,&ac ) ;
i e r r = VecGetArray ( xReal ,&axReal ) ;

//Core CODE
while ( ( i t e r < maxIterat ion ) && (normr > t o lb ) ) {
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cblas dgemm (CblasColMajor , CblasNoTrans , CblasNoTrans ,
1 , s , sizeMat , a l f a , ar , 1 , aP , sizeMat , beta , af , 1 ) ;

for ( k = 0 ; k < s−1; k++) {
// I n i t i a l i z e ac
for ( i = k ; i< s ; i++)
ac [ i ] = 0 ;

// So lve M\ f
ac [ k ] = a f [ k ] /aM[ k∗ s+k ] ;
for ( i = k+1; i < s ; i++) {
for ( j = k ; j < i ; j++) {
ac [ i ] = ac [ i ]+(aM[ j ∗ s+i ]∗ ac [ j ] ) /aM[ i ∗ s+i ] ;
}
ac [ i ] = a f [ i ] /aM[ i ∗ s+i ]−ac [ i ] ;
}

// Ca l cu la t e v
cb las dcopy ( sizeMat , ar , 1 , av , 1 ) ;

cblas dgemv ( CblasColMajor , CblasNoTrans ,
sizeMat , s−k , −1, aG+sizeMat ∗k , sizeMat , ac+k , 1 , 1 , av , 1 ) ;

//PRECONDITIONING
i e r r = VecRestoreArray (v,&av ) ;
VecCopy(v , vcopy ) ;
i e r r = PCApply( pc , vcopy , v ) ;
i e r r = VecGetArray (v,&av ) ;

//Compute new U
cblas dgemv ( CblasColMajor , CblasNoTrans ,

sizeMat , s−k , +1, aU+sizeMat ∗k , sizeMat , ac+k , 1 , om, av , 1 ) ;

cb las dcopy ( sizeMat , av , 1 , aU+sizeMat ∗k , 1 ) ;
//Compute new G

cb las dcopy ( sizeMat , aU+k∗ sizeMat , 1 , aUapp , 1 ) ;
VecRestoreArray (Uapp,&aUapp ) ;
MatMult (A,Uapp ,Gapp ) ;
VecGetArray (Gapp,&aGapp ) ;
VecGetArray (Uapp,&aUapp ) ;
cb las dcopy ( sizeMat , aGapp , 1 ,aG+sizeMat ∗k , 1 ) ;

//BiOrthogona l i se the new ba s i s v e c t o r s
for ( i = 0 ; i < k ; i++) {
Alpha = cb la s ddot ( sizeMat , aP+sizeMat ∗ i , 1 ,aG+sizeMat ∗k , 1 ) /aM[ i ∗ s+i ] ;
cb las daxpy ( sizeMat ,−Alpha ,aG+i ∗ sizeMat , 1 ,aG+k∗ sizeMat , 1 ) ;
cb las daxpy ( sizeMat ,−Alpha , aU+i ∗ sizeMat , 1 , aU+k∗ sizeMat , 1 ) ;
}

//New column of M
cblas dgemm (CblasColMajor , CblasNoTrans , CblasNoTrans ,

1 , s−k , sizeMat , a l f a , aG+k∗ sizeMat , 1 ,
aP+k∗ sizeMat , sizeMat , 0 , aM+k∗ s+k , 1 ) ;

//Make r or toghona l
Beta = a f [ k ] /aM[ k∗ s+k ] ;
cb las daxpy ( sizeMat ,−Beta , aG+k∗ sizeMat , 1 , ar , 1 ) ;
cb las daxpy ( sizeMat , Beta , aU+k∗ sizeMat , 1 , ax , 1 ) ;
normr = calcNorm ( ar , s izeMat ) ;

//New f = P ’∗ r
i f ( k < s−1)
cb las daxpy ( s−k−1,−Beta ,aM+k∗ s+k+1 ,1 , a f+k+1 ,1) ;

}
// Ca l cu la t e t = A∗v
cb las dcopy ( sizeMat , ar , 1 , av , 1 ) ;
VecRestoreArray (v,&av ) ;

//PRECONDITIONING
VecCopy(v , vcopy ) ;
PCApply( pc , vcopy , v ) ;

// Ca l cu la t e
MatMult (A, v , t ) ;
VecGetArray (v,&av ) ;
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// Ca l cu la t e Omega
om = omega ( at , ar , angle , s izeMat ) ;

// Ca l cu la t e r and x
cb las daxpy ( sizeMat ,−om, at , 1 , ar , 1 ) ;
cb las daxpy ( sizeMat ,+om, av , 1 , ax , 1 ) ;
normr = calcNorm ( ar , s izeMat ) ;
i t e r++;
}

return ;
}

PetscReal omega ( Pet s cSca la r ∗at , Pe t s cSca la r ∗ar ,
PetscReal angle , Pet sc Int s izeMat ) {

PetscReal ns , nt , t s ;
PetscReal rho ,om;
ns = calcNorm ( ar , s izeMat ) ;
nt = calcNorm ( at , s izeMat ) ;
t s = cb la s ddot ( sizeMat , at , 1 , ar , 1 ) ;
rho = fabs ( t s /( nt∗ns ) ) ;
om = ts /( nt∗nt ) ;
i f ( rho < ang le )
om = om∗ ang le / rho ;

return om;
}

PetscReal calcNorm ( Pet s cSca la r ∗array , Pet sc Int s i z e ) {
int i ;
PetscReal somma = 0 ;
for ( i = 0 ; i < s i z e ; i++)
somma = somma + array [ i ]∗ array [ i ] ;

return s q r t (somma ) ;
}

Some considerations on the code and its performances:

• Preconditioning is applied with PETSc routines;

• Operations with A matrix are applied with PETSc routines;

• Operations with dense matrices (G, U , M ) are applied with BLAS routines, due to
the fact that only some portions of these matrices are used each time;

• Shadow space (s variable) has been fixed to 3 and omega angle has been fixed to 0.7;

• A preliminary profiling has been performed on input data defined in Table 6 with one
process only. Total solver time is 21 seconds, compared to 17 seconds of BICGSTAB
(with the same Block-Jacobi preconditioner); number of iterations is 56 compared to
128 of BICGSTAB; error on solution are comparable.
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Figure 53: IDR Profiling.

A simple profiling of the operations give results as reported in Figure 53; PCapply and
MatMult are, as expected, most expensive operations. VecCopy has 15 % and this
could be a point to be optimized.
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